
Computer Assisted Solution of Homotopy Continuation
Method Algorithm for Darcy-Brinkman Forchheimer

Flow through an 3D Animation Visualization

 Ashoka S. B. M.C.A., M.Phil., [Ph.D.]a,b.

Research Scholar
*a Department of Computer Science and Applications
Bangalore University, Bangalore–560 056, INDIA

b Assistant Professor, Department of Computer Science
Govt. First Grade College, Jayanagara, Bangalore-70.

Abstract-An algorithm is a systematic method containing a
sequence of instructions to solve a computational problem. It
takes some inputs, performs a well defined sequence of steps,
and produces some output. Once we design an algorithm, we
need to know how well it performs on any input. A major
criterion for a good algorithm is its efficiency that is, how
much time and memory are required to solve a particular
problem. Intuitively, time and memory can be measured in
real units such as seconds and megabytes. However, these
measurements are not subjective for comparisons between
algorithms, because they depend on the computing power of
the specific machine and on the specific data set. To
standardize the measurement of algorithm efficiency.
Algorithm can be written in pseudo-code because
simplification of the actual implementation is very good way.
In this present paper mainly focus on homotopy continuation
method algorithm for solving system of non linear algebraic
equation, given the generalized uniform approach of three
more problems result. We comparison HCM observation
results (both time and space complexity) with other different
methods algorithms observations. The detailed observations of
all the methods of algorithm noted and platen. All algorithm
yields unique approach on the results with limiting conditions.
But our one of proposed works HCM algorithm given a
excellent results, for all set of parameters with high end
values. One more highlight of this chapter is obtained the
solution also represented through 3D visualization using open
source code Mayavi version 0.6.

Key words: Computer Graphics, Darcy, Brikman and
Forchheimer number, HCM, 3D, Modeling, texturing,
Compositing, Pre-Production, Production and Post
Production.

Introduction
Time complexity is a function describing the

amount of time an algorithm takes in terms of the amount
of input to the algorithm. "Time" can mean the number of
memory accesses performed, the number of comparisons
between integers, the number of times some inner loop is
executed, or some other natural unit related to the amount
of real time the algorithm will take. We try to keep this idea
of time separate from "clock ticks" time, since many factors
unrelated to the algorithm itself can affect the real time
(like the language used, type of computing hardware,
proficiency of the programmer, code optimization in the
compiler, etc.). It turns out that, if we chose the units
wisely, all of the other stuff doesn't matter and we can get

an independent measure of the efficiency of the algorithm.
Time complexity is a measure efficient algorithm plays the
major role in determining the running time.
 Space complexity is a function describing the
amount of memory (space) an algorithm takes in terms of
the amount of input to the algorithm. We often speak of
"extra" memory needed, not counting the memory needed
to store the input itself. Again, we use natural (but fixed-
length) units to measure this. We can use bytes, but it's
easier to use, say, number of integers used, number of
fixed-sized structures, etc. In the end, the function we come
up with will be independent of the actual number of bytes
needed to represent the unit. Space complexity is
sometimes ignored because the space used is minimal
and/or obvious, but sometimes it becomes as important an
issue as time. Space complexity is a measure of the
amount of working storage an algorithm needs. That means
how much memory, in the worst case, is needed at any
point in the algorithm. As with time complexity, we're
mostly concerned with how the space needs grow, in big-
Oh terms, as the size N of the input problem grows.
In space complexity, auxiliary space is extra space or
temporary space used by the algorithm, which is mostly
used in algorithm where we use swapping or temporary
variables. The Space complexity means total space taken
by the algorithm with respect to input size. Space
complexity calculated by both auxiliary space and space
used by the input.

The exact speed of an algorithm depends on where
the algorithm is run, as well as the exact details of its
implementation, computer scientists typically talk about the
runtime relative to the size of the input. The time
complexity of an algorithm is commonly expressed using
big O notation, which excludes coefficients and lower order
terms. When expressed this way, the time complexity is
said to be described asymptotically, i.e., as the input size
goes to infinity. For some optimization problems, we can
reach an improved time complexity, but it seems that we
have to pay for this with an exponential space complexity.
Note that algorithms with exponential space complexities
are absolutely useless for real life applications. Theoretical
computer science has its uses and applications and can turn
out to be quite practical. In this article, targeted at
programmers who know their art but who don't have any
theoretical computer science background, I will present one

Ashoka S. B. / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (6) , 2015, 5527-5530

www.ijcsit.com 5527

of the most pragmatic tools of computer science: Big O
notation and algorithm complexity analysis. In this chapter
we will try to found the computational complexity of our
generalized module of HCM. Computational complexity
can be further divided into time complexity and space
complexity, which estimate the time and memory
requirements of an algorithm, respectively. In general, time
complexity is considered much more important than space
complexity, in part because the memory requirement of
most algorithms is lower than the capacity of current
machines. In the rest of the section, all calculations and
comparisons of algorithm efficiency refer to time
complexity as complexity unless otherwise specified. Also,
time complexity and running time can be used
interchangeably in most of the cases. The time complexity
of an algorithm is calculated on the basis of the number of
required elementary computational steps that are
interpreted as a function of the input size. Most of the time,
because of the presence of conditional constructs (e.g., if-
else statements) in an algorithm, the number of necessary
steps differs from input to input. Thus, average-case
complexity should be a more meaningful characterization
of the algorithm. However, its calculations are often
difficult and complicated, which necessitates the use of a
worst-case complexity metric. An algorithm’s worst-case
complexity is its complexity with respect to the worst
possible inputs, which gives an upper bound on the
average-case complexity. As we shall see, the worst-case
complexity may sometimes provide a decent approximation
of the average-case complexity. The theory of
computational complexity was developed Ullman (1984)
Papadimitriou (1993, 1998), Wilf (2002). This allows an
algorithm’s efficiency to be estimated and expressed

ALGORITHM FOR HOMOTOPY CONTINUATION METHOD
Step1: Start.
Step2: Accept initial parameters values [x0, x1,….xn].

Step3: FOR W = 0 DO 4. // Chosen uj+1 closer to u(tj+1)

Step4: FOR K = 0 DO 4. //Calculate slope at the
beginning, midpoint and end point.

Step5: Find
a). SUBROUTINE Normal_constant_matrix().
b). SUBROUTINE Differential_matrix().
c). SUBROUTINE Inverse_matrix().
d). SUBROUTINE Multiplication_matrix().

Step6: Calculate

Where n = 0, 1, 2, 3, . . .

 is the increment based on the slope at the beginning of

the interval, using ,
 is the increment based on the slope at the midpoint

of the interval, using ;

 is again the increment based on the slope at the

midpoint, but now using ;

 is the increment based on the slope at the end of

the interval, using .
Step7: End of “ K “ loop.
Step8: Calculate

Now pick a step-size h > 0

Step9: End of “ W “ loop.
Step10: Print “Roots”.
Step11: Stop.

SUBROUTINE Normal_constant_matrix(set of
parameters received)

Step1: Start.
Step2: Accept A, B, N, v, δ.

where A = 2Da

 B = ReFC Da .

Step3: For n = 0 DO (n-1).
Repeat the step4 to step5
till n=0 to (n-1).
Step4: Calculate

'

log (1) ()
1

log(1) ()
1

(1)
()

()

log(1)
()

1

n

n

n

n

n

v y

v y

y n n
N

G y e

v
G y e

where
1

2 1R R (ratio of inner to outer cylinder

radii).
v variable viscosity.
Step5: Calculate

2 2

12

12

2

2

12

12

2

()

2 11

2
1

()

2 11

.

n n n n

n n n
n n n

n n n

n n n
n n n

n n

f U BY G U

G Y GN
Y G N U

N
A Y G U

G Y GN
Y G N U

Y G

Step6: End of n loop
Step7: Return Functional values.
Step8: Stop.

Ashoka S. B. / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (6) , 2015, 5527-5530

www.ijcsit.com 5528

SUBROUTINE Differential matrix (set of parameters
received)
Step1: Start.
Step2: Accept A, B, N, v, δ.
Step3: For i =0 DO N
Step4: Calculate

2

1

log(1) ()
1

log(1) ()
1

log(1) ()
1

1[] ((1), 2)

(1)

log(1)

1

n

n

n

n

n

n

n

v y

v y

v y

esp n pow

Y n
N

G e

G e

v
G e

 where
1

2 1R R (ratio of inner to outer cylinder radii).

v variable viscosity.
Step5: Calculate

Step6: End of Ith loop.
Step7: Return Functional values.
Step8: Stop.

SUBROUTINE Inverse_ matrix (set of parameters
received).
Step1: Start.
Step2: Accept A, B, Delta, Epsilon,N.
Step3: Find the inverse of Differential Matrix using Matrix
determination method applying Gauss Jordan Method
Step4: Read the order of the matrix ‘n’ and read the
coefficients of the linear equations.
Step5: For k=1 to n Do
 For l=k+1 to n+1 Do
 a[k][l] = a[k][l] / a[k][k]
 End for l Loop
 Set a[k][k] = 1
Step6: For i=1 to n Do
 if (i not equal to k) then,
Step7: For j=k+1 to n+1 Do
 a[i][j] = a[i][j] – (a[k][j] * a[i][k])
 End for j Loop
 End for i Loop
 End for k Loop
Step8: For m=1 to n Do
 x[m] = a[m][n+1]
 Display x[m]
 End for m Loop.

Step9 : Return Functional values x[m].
Step10: Stop.

SUBROUTINE Multiplication_matrix(Inverse_Matrix,
Constant_Matrix).
Step1: Start.
Step2: Accept N,h.
Step3: Calculate
Step4: For I = 0 DO N
Step5: For J = 0 DO N
Step6: Multi_Matrix = h*(Inverse_Matrix*
Constant_Matrix)
Step7: End of J Loop.
Step8: End of I Loop.
Step9: Return Functional values.
Step10: Stop.

3D SIMULATION OF HCM RESULTS
 3D simulation software is used to present Darcy-
Brikman-Forchheimer flow through annulus. Simulation
gives visual sequence of different set of parameter in pours
media. 3D animation also called as Computer Graphics
or CG. CG refers to any picture or series of pictures that
are generated with the aid of a computer. The process of
creating in 3D requires that we need to model or shape
objects in a scene, give them color and light, animate them
as required, and render them through a virtual camera to
make an image.

Porous media modelling.
Maya polygon is used to create 3 dimensional porous
media.
Step1:
Create cylinder
1. Create a NURBS cylinder and name it "c_i", for

"inferior constraint". Go to the Channel Box and set its
Y scale to 10, and its Z scale to 0.4.

 2. Enter "Insert" to edit the Pivot Point position, and then
go to the Numerical Input Line, which is a white space
just above the Channel Box. Enter the values 0 -10 0.

Step 2
Create cylinder with porous media.

1. Create Polygonal sphere and name it “porous
Particle”

2. Duplicate porous particles to fill inside the
cylinder.

Step 3
Create annulus with porous media

12
2

12

12 2
2

12 2

()
2*

2 11

()
2 .

2 11 1

n n n
n n n n n n n

n n n
n n n n n n n n

G Y GN
f U BY G U Y G N U

G Y GN N
A YGU YG N U Y G

Ashoka S. B. / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (6) , 2015, 5527-5530

www.ijcsit.com 5529

1. Fill the porous particles centered with iron rod
inside the cylinder created in step 1

Animation
Create expression to animate velocity profile for different
set of parameter.

Table 1: Number of equations required for convergence, for
different parameters’ combination, for an accuracy of 10-4

(applies to both channel and tube flows

Different values of Epsilon with same set of parameters

Parameters
=

=

= 1

F

D a

 = 0.1,

= 1,

1

F

Da

= 0.1,

= 1,

31.66227

F

Da

=

= 1,

100

F

Da

Nu present
paper

4.146 4.115 5.12886 5.8479

Nield[9] 4.159 4.122 5.129 —

Hooman[10] 4.181 4.131 5.139 5.8935

Table 2: Rectangular Problem-Comparison between present
results on Nusselt number with those of Hooman [10] and

Nield[9].

Table 3: Cylindrical Problem-Comparison between present results
on Nusselt number with those of Hooman and Gurgenci[16].

RESULS AND CONCLUSIONS

 We are designed single module HCM algorithm to
solve all four problems, ie, DBF flow through rectangular
porous channel problem with constant viscosity DBF flow
through a cylindrical porous tube, DBF flow through a
cylindrical porous annulus and DBF flow through a
rectangular porous channel with variable viscosity, with all
different set of parameters in the above there problems.
 This algorithm works for all sets of parameters, it
succeeds in giving the required solution for large values of
Forchheimer number when shooting method fails to do so.

REFERENCES
[1] G. J. Chaitin. On the length of programs for computing finite binary

equences.Journal of the ACM, 13(4):547--569, 1966.
[2] P. Gacs. On the symmetry of algorithmic information. Soviet

Mathematics Doklady, 15:1477--1480, 1974.
[3] M. Hutter. On Universal Prediction

and Bayesian Confirmation. Theoretical Computer Science, 384:1
(2007) 33-48

[4] A. N. Kolmogorov. Three approaches to the quantitative definition
of information. Problems of Information and Transmission, 1(1):1--
7, 1965.

[5] A. N. Kolmogorov. Combinatorial foundations of information
theory and the calculusof probabilities. Russian Mathematical
Surveys, 38(4):27--36, 1983.

[6] L. A. Levin. Laws of information conservation (non-growth) and
aspects of the foundation of probability theory. Problems of
Information Transmission, 10(3):206--210, 1974.

[7] M. Li and P. M. B. Vitanyi. An Introduction to Kolmogorov
Complexity and its Applications. Springer, New York, 2nd
edition, 1997.

[8] A. K. Zvonkin and L. A. Levin. The complexity of finite objects and
the development of the concepts of information and randomness by
means of the theory of algorithms.Russian Mathematical
Surveys, 25(6):83--124, 1970.

[9] D. A. Nield and A. Bejan, Convection in porous media, Springer
Verlag, New York, 2006.

[10] K. Hooman, A perturbation solution for forced convection in a
porous saturated duct, J.Comput. Appl. Math. 211(1)
(2008) 57-66.

[11] K. Hooman and H. Gurgenci, A theoretical analysis of forced
convection in a porous saturated circular tube: Brinkman-
Forchheimer model, Transport Porous Media, 69(3) (2007) 289-300.

Λ Re Da
No.of equations

required for
convergence

1.2
1.2
1.2

10
10
10

05
10
20

20
12
08

0.9
1.0
1.1

10
10
10

10
10
10

13
12
11

1.2
1.2
1.2

05
10
20

10
10
10

12
11
11

Ashoka S. B. / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (6) , 2015, 5527-5530

www.ijcsit.com 5530

