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Abstract-An algorithm is a systematic method containing a 
sequence of instructions to solve a computational problem. It 
takes some inputs, performs a well defined sequence of steps, 
and produces some output. Once we design an algorithm, we 
need to know how well it performs on any input.  A major 
criterion for a good algorithm is its efficiency that is, how 
much time and memory are required to solve a particular 
problem. Intuitively, time and memory can be measured in 
real units such as seconds and megabytes. However, these 
measurements are not subjective for comparisons between 
algorithms, because they depend on the computing power of 
the specific machine and on the specific data set. To 
standardize the measurement of algorithm efficiency. 
Algorithm can be written in pseudo-code because 
simplification of the actual implementation is very good way. 
In this present paper mainly focus on homotopy continuation 
method algorithm for solving system of non linear algebraic 
equation, given the generalized  uniform approach of  three 
more problems  result. We comparison  HCM observation 
results (both time and space complexity) with other different 
methods algorithms observations. The detailed observations of 
all the methods of algorithm noted and platen. All algorithm 
yields unique approach on the results with limiting conditions. 
But our one of proposed works HCM algorithm given a 
excellent results, for all set of parameters with high end 
values. One more highlight of this chapter is obtained the 
solution also represented through 3D visualization using open 
source code Mayavi version 0.6. 

Key words: Computer Graphics, Darcy, Brikman  and 
Forchheimer number, HCM, 3D, Modeling, texturing, 
Compositing, Pre-Production, Production and Post 
Production. 

Introduction 
Time complexity is a function describing the 

amount of time an algorithm takes in terms of the amount 
of input to the algorithm. "Time" can mean the number of 
memory accesses performed, the number of comparisons 
between integers, the number of times some inner loop is 
executed, or some other natural unit related to the amount 
of real time the algorithm will take. We try to keep this idea 
of time separate from "clock ticks" time, since many factors 
unrelated to the algorithm itself can affect the real time 
(like the language used, type of computing hardware, 
proficiency of the programmer, code optimization in the 
compiler, etc.). It turns out that, if we chose the units 
wisely, all of the other stuff doesn't matter and we can get 

an independent measure of the efficiency of the algorithm. 
Time complexity is a measure efficient algorithm plays the 
major role in determining the running time. 
 Space complexity is a function describing the 
amount of memory (space) an algorithm takes in terms of 
the amount of input to the algorithm. We often speak of 
"extra" memory needed, not counting the memory needed 
to store the input itself. Again, we use natural (but fixed-
length) units to measure this. We can use bytes, but it's 
easier to use, say, number of integers used, number of 
fixed-sized structures, etc. In the end, the function we come 
up with will be independent of the actual number of bytes 
needed to represent the unit. Space complexity is 
sometimes ignored because the space used is minimal 
and/or obvious, but sometimes it becomes as important an 
issue as time. Space complexity is a measure of the 
amount of working storage an algorithm needs. That means 
how much memory, in the worst case, is needed at any 
point in the algorithm. As with time complexity, we're 
mostly concerned with how the space needs grow, in big-
Oh terms, as the size N of the input problem grows. 
In space complexity, auxiliary space is extra space or 
temporary space used by the algorithm, which is mostly 
used in algorithm where we use swapping or temporary 
variables. The Space complexity means total space taken 
by the algorithm with respect to input size. Space 
complexity calculated by both auxiliary space and space 
used by the input. 

The exact speed of an algorithm depends on where 
the algorithm is run, as well as the exact details of its 
implementation, computer scientists typically talk about the 
runtime relative to the size of the input. The time 
complexity of an algorithm is commonly expressed using 
big O notation, which excludes coefficients and lower order 
terms. When expressed this way, the time complexity is 
said to be described asymptotically, i.e., as the input size 
goes to infinity. For some optimization problems, we can 
reach an improved time complexity, but it seems that we 
have to pay for this with an exponential space complexity. 
Note that algorithms with exponential space complexities 
are absolutely useless for real life applications. Theoretical 
computer science has its uses and applications and can turn 
out to be quite practical. In this article, targeted at 
programmers who know their art but who don't have any 
theoretical computer science background, I will present one 
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of the most pragmatic tools of computer science: Big O 
notation and algorithm complexity analysis. In this chapter 
we will try to found the computational complexity of our 
generalized module of  HCM. Computational complexity 
can be further divided into time complexity and space 
complexity, which estimate the time and memory 
requirements of an algorithm, respectively. In general, time 
complexity is considered much more important than space 
complexity, in part because the memory requirement of 
most algorithms is lower than the capacity of current 
machines. In the rest of the section, all calculations and 
comparisons of algorithm efficiency refer to time 
complexity as complexity unless otherwise specified. Also, 
time complexity and running time can be used 
interchangeably in most of the cases. The time complexity 
of an algorithm is calculated on the basis of the number of 
required elementary computational steps that are 
interpreted as a function of the input size. Most of the time, 
because of the presence of conditional constructs (e.g., if-
else statements) in an algorithm, the number of necessary 
steps differs from input to input. Thus, average-case 
complexity should be a more meaningful characterization 
of the algorithm. However, its calculations are often 
difficult and complicated, which necessitates the use of a 
worst-case complexity metric. An algorithm’s worst-case 
complexity is its complexity with respect to the worst 
possible inputs, which gives an upper bound on the 
average-case complexity. As we shall see, the worst-case 
complexity may sometimes provide a decent approximation 
of the average-case complexity. The theory of 
computational complexity was developed Ullman (1984) 
Papadimitriou (1993, 1998), Wilf (2002). This allows an 
algorithm’s efficiency to be estimated and expressed  
 
ALGORITHM  FOR  HOMOTOPY  CONTINUATION METHOD 
Step1: Start. 
Step2: Accept initial parameters values [x0, x1,….xn]. 

Step3: FOR   W  =  0   DO  4.  // Chosen uj+1 closer to u(tj+1)   

Step4: FOR  K  =  0  DO  4.  //Calculate slope at the 
beginning, midpoint and end point. 

Step5: Find  
a). SUBROUTINE Normal_constant_matrix().  
b).  SUBROUTINE Differential_matrix(). 
c).  SUBROUTINE Inverse_matrix(). 
d).  SUBROUTINE Multiplication_matrix(). 

Step6: Calculate 

      
Where  n =  0, 1, 2, 3, . . . 

  is the increment based on the slope at the beginning of 

the interval, using , 
 is the increment based on the slope at the midpoint 

of the interval, using  ; 

 is again the increment based on the slope at the 

midpoint, but now using  ; 

 is the increment based on the slope at the end of 

the interval, using  . 
Step7:  End of   “ K  “  loop. 
Step8:  Calculate  

 
Now pick a step-size h > 0 

Step9:   End of  “ W “  loop. 
Step10:  Print “Roots”.  
Step11:  Stop. 
 
SUBROUTINE   Normal_constant_matrix(set of  
parameters received ) 
 
Step1: Start. 
Step2: Accept A, B, N, v, δ. 

where         A = 2Da  

        B = ReFC Da . 

Step3: For  n = 0  DO  (n-1). 
Repeat the step4 to step5  
till n=0 to (n-1).  
Step4: Calculate 
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where   
1

2 1R R   (ratio of inner to outer cylinder 

radii). 
v     variable viscosity.  
Step5: Calculate 
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Step6: End of    n loop 
Step7: Return Functional values. 
Step8: Stop. 
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SUBROUTINE   Differential matrix (set of parameters 
received) 
Step1: Start. 
Step2: Accept A, B, N, v, δ. 
Step3: For  i =0 DO   N 
Step4: Calculate 
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 where             
1

2 1R R   (ratio of inner to outer cylinder radii). 

v     variable viscosity.  
Step5: Calculate 

 
  
Step6:  End  of   Ith   loop. 
Step7: Return Functional values. 
Step8: Stop. 
 
SUBROUTINE Inverse_ matrix (set of parameters 
received). 
Step1: Start. 
Step2: Accept  A, B, Delta, Epsilon,N. 
Step3: Find the inverse of Differential Matrix using Matrix 
determination method applying Gauss Jordan Method 
Step4: Read the order of the matrix ‘n’ and read the 
coefficients of the linear  equations.  
Step5:  For k=1 to n Do 
 For  l=k+1 to n+1 Do 
 a[k][l] = a[k][l] / a[k][k] 
 End for l Loop 
 Set a[k][k] = 1 
Step6: For i=1 to n Do 
  if (i not equal to k) then,  
Step7: For j=k+1 to n+1 Do 
  a[i][j] = a[i][j] – (a[k][j] * a[i][k]) 
 End for j Loop 
 End for i Loop 
 End for k Loop 
Step8:  For m=1 to n Do 
  x[m] = a[m][n+1] 
  Display x[m] 
 End for m Loop. 
 
Step9  : Return Functional values x[m]. 
Step10: Stop. 

SUBROUTINE Multiplication_matrix(Inverse_Matrix, 
Constant_Matrix). 
Step1: Start. 
Step2: Accept  N,h. 
Step3: Calculate 
Step4: For  I = 0  DO   N 
Step5: For  J = 0  DO   N 
Step6: Multi_Matrix = h*(Inverse_Matrix* 
Constant_Matrix) 
Step7: End  of   J  Loop. 
Step8: End  of   I  Loop. 
Step9: Return Functional values. 
Step10: Stop. 
 

3D SIMULATION OF  HCM RESULTS 
 3D simulation software is used to present Darcy-
Brikman-Forchheimer flow through annulus. Simulation 
gives visual sequence of different set of parameter in pours 
media. 3D animation also called as Computer Graphics 
or CG. CG refers to any picture or series of pictures that 
are generated with the aid of a computer. The process of 
creating in 3D requires that we need to model or shape 
objects in a scene, give them color and light, animate them 
as required, and render them through a virtual camera to 
make an image.  
 
Porous media modelling. 
Maya polygon is used to create 3 dimensional porous 
media. 
Step1: 
Create cylinder 
1. Create a NURBS cylinder and name it "c_i", for 

"inferior constraint". Go to the Channel Box and set its 
Y scale to 10, and its Z scale to 0.4.  

 2. Enter "Insert" to edit the Pivot Point position, and then 
go to the Numerical Input Line, which is a white space 
just above the Channel Box. Enter the values 0 -10 0. 

 

 
Step 2  
Create cylinder with porous media. 

1. Create Polygonal sphere and name it “porous 
Particle”  

2. Duplicate porous particles to fill inside the 
cylinder. 
 

 
Step 3 
Create annulus with porous media 
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1. Fill the porous particles centered with iron rod 
inside the cylinder created in step 1 

 
 
Animation 
Create expression to animate velocity profile for different 
set of parameter. 

 
 

 
Table 1: Number of equations required for convergence, for 
different parameters’  combination, for an  accuracy of 10-4 

(applies to both  channel and tube flows 

 
Different values of Epsilon with same set of parameters  
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Nu present 
paper 

4.146 4.115 5.12886 5.8479 

Nield[9] 4.159 4.122 5.129 — 

Hooman[10] 4.181 4.131 5.139 5.8935 

Table 2: Rectangular Problem-Comparison between present 
results on Nusselt number  with those of Hooman [10] and 

Nield[9]. 
 

Table 3: Cylindrical Problem-Comparison between present results 
on Nusselt number with those of Hooman and Gurgenci[16]. 

 
RESULS AND CONCLUSIONS 

 We are designed single module HCM algorithm to 
solve all four problems, ie, DBF flow through rectangular 
porous channel problem with constant viscosity  DBF flow 
through a cylindrical porous tube, DBF flow through a 
cylindrical porous annulus and DBF flow through a 
rectangular porous channel with variable viscosity, with all 
different  set of parameters in the above there problems. 
 This algorithm works for all sets of parameters, it 
succeeds in giving the required solution for large values of 
Forchheimer number when shooting method fails to do so. 
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